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Abstract
We introduce the concept of pseudoanti-Hermitian operators in quaternionic
quantum mechanics and give a complete characterization of their spectra. We
highlight some physical properties related to time-reversal symmetry of the
pseudoanti-Hermitian quaternionic Hamiltonians.

PACS numbers: 11.30.Er, 03.65.Ca, 03.65.Fd

1. Introduction

Pseudo-Hermitian operators were introduced in the early 1940s by Dirac [1] and Pauli [2] in
order to overcome certain divergence difficulties in quantum physics, by using an indefinite
inner product. Later Lee and Wick [3] reassessed these operators showing that, contrary to a
widely held belief, the introduction of pseudo-Hermitian Hamiltonians in the theory leads to
a unitary S-matrix, provided that certain conditions are satisfied.

The question concerning pseudo-Hermitian operators has recently gained importance
[4, 5], starting from a study of Bender and Boettcher [6] on certain non-Hermitian Hamiltonians
with real spectra. In [4, 5], the spectrum of pseudo-Hermitian operators has been suitably
characterized and it has been proved that all non-Hermitian Hamiltonians with real spectra
belong to a subclass of pseudo-Hermitian Hamiltonians.

Many interesting physical properties of pseudo-Hermitian operators, connected with time-
reversal invariance, are examined in [7], where the existence of an antilinear involutory operator
which commutes with such operators is proved.

This last result clarifies the conjecture due to Bender and Boettcher [6] on the
connection between the reality of the spectrum of some non-Hermitian Hamiltonians and their
PT-invariance.

However, in a recent systematic study of quantum mechanics in quaternionic Hilbert space
[8], the issue of whether there is a quaternionic analogue of pseudo-Hermitian Hamiltonians
was left open; the object of the present paper is to fill this gap.
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When we approach the problem of introducing this concept in quaternionic Hilbert space
we must be careful. In fact, pseudo-Hermitian operators generalize standard Hermitian
observables in complex Hilbert space, but there is an important difference between the
structure of an observable in complex and quaternionic quantum mechanics. In complex
quantum mechanics, any anti-Hermitian operator can be made Hermitian (and vice versa) by
multiplying by i. In quaternionic quantum mechanics, in contrast, an anti-Hermitian operator
cannot be trivially converted to a Hermitian one by multiplying by a c-number; in this context in
fact, to obtain such a conversion one needs a ‘phase’ operator [8], so that standard observables
(in particular, Hamiltonians) are represented by anti-Hermitian quaternionic operators. Hence,
a definition of pseudoanti-Hermitian quaternionic operators (given in section 4) is needed in
order to generalize standard quaternionic observables.

After introducing basic notation and mathematical tools in section 2, a complete
biorthonormal eigenbasis for diagonalizable (non-Hermitian) quaternionic linear operators is
derived in section 3. Then, in section 4, a complete characterization of pseudoanti-Hermitian
quaternionic operator spectra is given and some of their properties are examined. In section 5,
the commutant of a quaternionic diagonalizable linear operator is obtained and a connection
between the pseudoanti-Hermiticity condition on a quaternionic operator and its invertible
anticommutant (i.e. the set of invertible linear quaternionic operators which anticommutes
with it) is recovered; more precisely the existence of a linear operator which anticommutes
with any pseudoanti-Hermitian quaternionic operator will be proved, and conversely we will
prove that if a quaternionic linear operator admits a linear operator which anticommutes with
it, then it is pseudoanti-Hermitian. This fact allows one to conclude that any time-reversal
invariant quaternionic Hamiltonian must necessarily be pseudoanti-Hermitian. In section 6,
further properties and characterizations of the pseudoanti-Hermitian quaternionic operators
are discussed. In section 7, a subclass of the pseudoanti-Hermitian quaternionic operators
admitting an involutory linear operator which anticommutes with it is suitably characterized.
To this subclass belongs any time-reversal invariant quaternionic Hamiltonian which describes
fermionic quantum systems. On the basis of the previous characterization, the celebrated
Kramers’ theorem (stating that all energy levels of a system containing an odd number of
electrons must be doubly degenerate regardless of how low the symmetry is, provided that
there are no magnetic fields that remove the time-reversal symmetry), which also holds when
unitary dynamics are considered in quaternionic quantum mechanics [8, 9], is recovered for
the more general class of dynamics described by any time-reversal invariant quaternionic
Hamiltonian with an imaginary spectrum.

2. Basic tools

A quaternion is usually expressed as

q = q0 + q1i + q2j + q3k

where ql ∈ R (l = 0, 1, 2, 3), i2 = j 2 = k2 = −1, ij = −j i = k.

The quaternion skew-field Q is an associative algebra of rank 4 over R, non-commutative
and endowed with an involutory antiautomorphism (conjugation) such that

q → qQ = q0 − q1i − q2j − q3k.

One can verify that

∀p, q ∈ Q (pq)Q = qQpQ.
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Every non-zero quaternion is invertible, and the unique inverse is given by 1/q = qQ/|q|,
where the quaternionic norm |q| is defined by

|q|2 = qqQ.

The norm of two quaternions q and p satisfies the following property:

|qp| = |pq| = |p||q|.
Two quaternions q and p belong to the same class when the following relation is satisfied:

q = s−1ps s ∈ Q. (1)

The real part and the norm of two quaternions belonging to the same class are the same,
hence also the norms of their imaginary parts coincide. Moreover, we can always assume
|s| = 1 [10].

In a (right) finite-dimensional vector space V over Q, every linear operator is associated
in a standard way with a square matrix acting on the left [11]. A necessary and sufficient
condition for a quaternionic matrix to be invertible is given, for instance, in [11].

The relation

〈ψ|ϕ〉 =
∑
i

ψ
Q
i ϕi

(where ψi, ϕi are the components in V of the vectors |ψ〉, |ϕ〉) defines a scalar product in V .
By analogy with the case of linear operators on complex vector space, one can define the

Hermitian conjugate A† = ATQ of a matrix (AT denotes, as usual, the transpose of A), and
introduce the concepts of unitarity, Hermiticity and so on. The properties of normal operators,
on quaternionic Hilbert space, have also been investigated [12].

3. Biorthonormal eigenbasis

The right eigenvalue equation for a quaternionic linear operator, H, is written as

H |ψl〉 = |ψl〉ql (2)

where |ψl〉 ∈ V and ql ∈ Q are the quaternionic eigenvectors and their corresponding
quaternionic eigenvalues. The mathematical methods to solve quaternionic eigenvalue
problems can be found, for instance, in [10], where a necessary and sufficient condition is
given for the diagonalizability (on finite-dimensional vector spaces) of quaternionic operators.
According to [10], we can ‘rephase’ each eigenvector in equation (2) by means of a suitable
unitary quaternion s, so that the corresponding eigenvalue,El (which must belong to the same
class of ql), is a complex number with positive imaginary part. Performing such rephasing,
the eigenvalue equation reads

H |ψn, a〉 = |ψn, a〉En En ∈ C ImEn � 0 (3)

where a degeneracy label a has been introduced: a = 1, 2, . . . , dn, and dn denotes the
eigenvalue degeneracy, i.e. the number of linearly independent eigenvectors associated with
the eigenvalue En.

Let us now derive a complete biorthonormal eigenbasis for the diagonalizable quaternionic
linear operators. In this paper, we limit ourselves to the study of discrete spectra only.

If H is diagonalizable, an invertible quaternionic similarity transformation S exists,
such that

HS = S� (4)
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where � is the complex eigenvalue matrix. Comparing equations (3) and (4), one can easily
see that the columns of S (which is in general non-unitary) must coincide with the eigenvectors
|ψn, a〉 of H.

Multiplying the adjoint of equation (4) on the left-hand side and on the right-hand side
by S−1†, we obtain

H †S−1† = S−1†�∗ (5)

where ∗ denotes the complex conjugation.
Denoting by |φn, a〉 the ordered columns of S−1† and looking at the previous equation

column by column, the eigenvalue equation forH † follows:

H †|φn, a〉 = |φn, a〉E∗
n. (6)

Note that, H not being anti-Hermitian, the state vectors |ψn, a〉 and |φn, a〉 are, in general,
different.

Moreover, the set of vectors {|ψn, a〉, |φn, a〉} constitutes a complete biorthonormal
eigenbasis of H; indeed, from equations (4) and (5) one easily obtains

S−1S = 1 ⇔ 〈φm, b|ψn, a〉 = δmnδba (7)

S−1†S† =
∑
n

dn∑
a=1

|φn, a〉〈ψn, a| = SS−1 =
∑
n

dn∑
a=1

|ψn, a〉〈φn, a| = 1. (8)

By using equation (8), the spectral representation of H is immediately obtained,

H = H1 =
∑
n

dn∑
a=1

|ψn, a〉En〈φn, a|.

Finally, we observe that, if an arbitrary quaternionic choice of the spectrum is made
(see equation (2)), the biorthonormal basis {|ψl〉, |φl〉} ≡ {|ψn, a〉s(n, a), |φn, a〉s(n, a)}(l =
1, . . . ,

∑
n dn) is obtained where s(n, a) are suitable unitary quaternions (which depend on

the discrete indices n and a) satisfying the following conditions:

sQ(n, a)Ens(n, a) = ql.

The spectral representation of H reads, in this case,

H =
∑
n

dn∑
a=1

|ψn, a〉sQ(n, a)Ens(n, a)〈φn, a| =
∑
l

|ψl〉ql〈φl|.

4. Pseudoanti-Hermitian quaternionic operators and their spectrum

In this section, a complete characterization of pseudoanti-Hermitian quaternionic operators
spectra is given, and some of their properties are discussed.

Definition 1. A quaternionic linear operator H is said to be pseudoanti-Hermitian if a linear
invertible operator η exists, such that

ηHη−1 = −H †. (9)

Note that in what follows we will prove that a Hermitian operator η always exists which
fulfils condition (9). Moreover, whenever η = 1,H = −H †, so that the above definition
clearly generalizes the concept of anti-Hermiticity, and the anti-Hermitian operators constitute
a subclass in the larger class of pseudoanti-Hermitian operators.
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The next proposition gives a complete characterization of pseudoanti-Hermitian
quaternionic operator spectra.

Proposition 1. Let H be a diagonalizable quaternionic operator. Then the following conditions
are equivalent:

(1) H is pseudoanti-Hermitian;
(2) the complex (non-imaginary) eigenvalues of H occur in pairs (En,−E∗

n) and for each
pair the degeneracy of both the eigenvalues is the same.

Proposition 1 can be easily proved by merely paraphrasing a proof given in [7] of a similar
statement which holds for complex operators. We prefer to write it down again, for the benefit
of the reader and also in order to fix our notation.

Proof. Let us first derive the implication (2) ⇒ (1). Given a diagonalizable quaternionic
operator H,

H =
∑
m

|ψm〉Em〈φm| =
∑
n

dn∑
a=1

|ψn, a〉En〈φn, a|

where the index n (in the last term) denotes the distinct eigenvalues of H, if {|um〉} is any
complete orthonormal basis in our space, let us pose

O =
∑
m

|ψm〉〈um| hence O−1 =
∑
m

|um〉〈φm|.

It is easy to show that

O−1HO =
∑
m

|um〉〈φm|
∑
m′

|ψm′ 〉Em′ 〈φm′ |
∑
m′′

|ψm′′ 〉〈um′′ | =
∑
m

|um〉Em〈um|.

Moreover, one easily obtains

(OO†)H †(OO†)−1 =
∑
m

|ψm〉E∗
m〈φm|. (10)

Let us now assume that condition (2) holds. We use (whenever it is necessary) the subscript
‘0’ to denote imaginary eigenvalues and the corresponding eigenvectors, and the subscript ‘±’
to denote the complex eigenvalues with positive or negative real parts and the same imaginary
parts, respectively, and the corresponding eigenvectors. Condition (2) allows us to define a
suitable operator T as follows:

T |ψn± , a〉 = |ψn∓, a〉 T |ψn0 , a〉 = |ψn0 , a〉. (11)

Note that T 2 = 1; moreoverT = 1 if and only if the spectrum of H is imaginary. Furthermore,

T = T 1 = T


∑

n0

dn0∑
a=1

∣∣ψn0 , a
〉 〈
φn0 , a

∣∣ +
∑
n+

dn+∑
a=1

|ψn+ , a〉〈φn+, a| +
∑
n−

dn−∑
a=1

|ψn− , a〉〈φn−, a|



=
∑
n0,a

∣∣ψn0 , a
〉 〈
φn0 , a

∣∣ +
∑
n+,n−,a

(|ψn− , a〉〈φn+ , a| + |ψn+, a〉〈φn− , a|)

hence,

〈φn±, a|T = 〈φn∓ , a|
〈
φn0 , a

∣∣T = 〈
φn0, a

∣∣ . (12)

Then, by simple calculations, one has

THT = −
∑
n

|ψn〉E∗
n〈φn| (13)
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and finally, comparing equations (10) and (13), condition (1) follows at once, where

η = (OO†)−1T =
∑
n0,a

∣∣φn0, a
〉〈
φn0 , a

∣∣ +
∑
n+,n−,a

(|φn+, a〉〈φn− , a| + |φn−, a〉〈φn+, a|) = η†

(14)

and, obviously,

η−1 =
∑
n0,a

∣∣ψn0 , a
〉〈
ψn0 , a

∣∣ +
∑
n+,n−,a

(|ψn+ , a〉〈ψn− , a| + |ψn− , a〉〈ψn+, a|).

Let us now derive the implication (1) ⇒ (2). According to equations (9) and (5)

Hη−1|φn, a〉 = −η−1H †|φn, a〉 = η−1|φn, a〉(−E∗
n)

hence η−1|φn, a〉 �= 0 is an eigenvector of H associated with the eigenvalue −E∗
n . More

generally, η−1 maps the eigensubspace associated withEn to that associated with −E∗
n so that,

being η invertible, both the subspaces have the same dimension.
Moreover, let us observe that, if one further assumes η = η†, it is always possible to

choose the eigenbasis in such a way that

η|ψn±, a〉 = |φn∓, a〉 η
∣∣ψn0 , a

〉 = ∣∣φn0, a
〉

(15)

thus re-obtaining equation (14). �

We conclude, on the basis of the above analysis, that one can always assume that, if H is
pseudoanti-Hermitian, a Hermitian operator η exists that fulfils condition (1), and which has
the form given in equation (14).

Finally, recalling that in the case of the imaginary spectrum T = 1 and considering
equation (10), the following statement holds:

Proposition 2. The (complex) spectrum of a quaternionic diagonalizable pseudoanti-
Hermitian operator is imaginary if and only if η = (OO†)−1.

To conclude this section, let us consider a quantum system in a right quaternionic Hilbert
spaceV endowed with a quaternionic scalar product, and with a (possibly non-anti-Hermitian)
Hamiltonian H = H(t) in general, time dependent. The quaternionic Schrödinger equation
reads

d

dt
|ψ〉 = −H |ψ〉. (16)

Proposition 3. Let η be a Hermitian time-independent operator in V . Then, the indefinite
inner product 〈 | 〉η defined by

〈ψ|ϕ〉η := 〈ψ|η|ϕ〉 ∀|ψ〉, |ϕ〉 ∈ V (17)

is invariant under the time translation generated by the Hamiltonian H if and only if H and η
satisfy equation (9) (i.e. H is pseudoanti-Hermitian).

Proof. Using the Schrödinger equation (16) and equation (17), one obtains for any two
evolving state vectors |ψ(t)〉 and |ϕ(t)〉

d

dt
〈ψ(t)|ϕ(t)〉η =

(
d

dt
〈ψ|

)
η|ϕ〉 + 〈ψ|η d

dt
|ϕ〉 = 〈ψ|(ηH +H †η)|ϕ〉.

Therefore, 〈ψ(t)|ϕ(t)〉η is constant if and only if equation (9) holds. �

We recall that for η = 1 equation (9) reduces to the condition of the anti-Hermiticity
of the Hamiltonian H. Hence pseudoanti-Hermitian dynamics are a generalization of unitary
dynamics in Hilbert spaces.
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5. Pseudoanti-Hermitian quaternionic operators and their anticommutant

In this section, we discuss the connection between the pseudoanti-Hermiticity condition and
the invertible anticommutant of H (i.e. the set of invertible linear quaternionic operators which
anticommute with it). This connection is highlighted by means of proposition 6 proved later
in this paper. As a preliminary step, we state the following two propositions on quaternionic
diagonalizable linear operators.

Proposition 4. Let H be a diagonalizable quaternionic linear operator that admits
the biorthonormal eigenbasis {|ψn, a〉, |φn, a〉}. Then all quaternionic linear operators �
such that

�H = H� (18)

are given by

� =
∑
n

dn∑
a=1

dn∑
b=1

|ψn, a〉�(n; a, b)〈φn, b|

where

• �(n; a, b) are arbitrary complex numbers if En is complex;
• �(n; a, b) are arbitrary quaternions if En is real.

Proof. Equation (18) implies the following relations between matrix elements:

〈φm, b|�H |ψn, a〉 = 〈φm, b|H�|ψn, a〉.
By using equations (3) and (6), it is easy to obtain

〈φm, b|�|ψn, a〉En = Em〈φm, b|�|ψn, a〉. (19)

Hence if 〈φm, b|�|ψn, a〉 is different from zero, En and Em must belong to the same class;
but En and Em are real or complex numbers with positive imaginary parts and their class can
be the same only if n = m.

Moreover,�(n; a, b) ≡ 〈φn, b|�|ψn, a〉 is necessarily complex if ImEn �= 0, whereas it
can be quaternionic only if ImEn = 0. �

Proposition 5. Let H be a diagonalizable quaternionic linear operator. Then the set ω, of all
quaternionic invertible linear operators ω such that

ωHω−1 = H † (20)

is non-void, and is given by

ω = ρG

where ρ is anti-Hermitian and G is the invertible commutant of H.

Proof. Let {|ψn, a〉, |φn, a〉} be a complete biorthonormal eigenbasis associated with H,

H =
∑
n

dn∑
a=1

|ψn, a〉En〈φn, a| (21)

and let us consider the following operator:

ρ = −
∑
n

dn∑
a=1

|φn, a〉j 〈φn, a| hence ρ−1 =
∑
n

dn∑
a=1

|ψn, a〉j 〈ψn, a|. (22)
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Then by a simple calculation

ρHρ−1 = H †. (23)

Hence the anti-Hermitian operator ρ belongs to ω. Moreover

ωH = H †ω = ρHρ−1ω

that is

ρ−1ωH = Hρ−1ω

therefore ρ−1ω ∈ G, and the thesis follows at once. �

Furthermore, by analogy with the case of orthonormal basis [8], we give the following
definition.

Definition 2. Let E = {|ψm〉, |φm〉} be a biorthonormal basis in a quaternionic Hilbert space;
we define the left acting operators IE , JE ,KE as follows:

IE :=
∑
m

|ψm〉i〈φm| JE :=
∑
m

|ψm〉j 〈φm| KE :=
∑
m

|ψm〉k〈φm|. (24)

The algebra is clearly isomorphic to the quaternion algebra: I 2
E = J 2

E = K2
E = −1,

IEJE = −JEIE = KE .
Let us now prove our main result.

Proposition 6. A quaternionic diagonalizable linear operator H is pseudoanti-Hermitian if
and only if a linear invertible quaternionic operator 
̂ exists such that {H, 
̂} = 0.

Proof. Let H be a pseudoanti-Hermitian operator. By using equations (9) and (23) one
immediately obtains

ηHη−1 = −ρHρ−1.

Hence, the linear operator
 = ρ−1η anticommutes with H:


H +H
 = 0.

The explicit form of 
 is easily obtained from equations (14) and (22),


 = ρ−1η =
∑
n0,a

∣∣ψn0 , a
〉
j
〈
φn0, a

∣∣ +
∑
n+,n−,a

(|ψn+ , a〉j 〈φn−, a| + |ψn−, a〉j 〈φn+ , a|)

= T JB = JBT . (25)

Then 
 coincides with the product T JB, where T is the operator defined in the proof of
proposition 1 and JB is defined in equation (24), with B = {|ψn, a〉, |φn, a〉}. Finally, let us
note that 
2 = −1.

In order to prove the converse implication, let us assume that an invertible operator 
̂
exists such that


̂H +H
̂ = 0.

Then by using proposition 5, the previous equation implies

(ρ
̂)H = −H †(ρ
̂)

therefore, according to definition 1 (with η = ρ
̂), H is pseudoanti-Hermitian. �
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As a consequence of the previous statement, it can be immediately shown that any operator
which anticommutes with H has the form


̂ = 
g g ∈ G (26)

where
 is given by equation (25).
Moreover, the following statement holds:

Proposition 7. A quaternionic diagonalizable pseudoanti-Hermitian operator H has
imaginary spectrum if and only if it anticommutes with JBg (g ∈ G).

Proof. Recalling that in the case of imaginary spectrum T ≡ 1, and using equation (25) the
proof immediately follows. �

We conclude this section by observing that proposition 6 has an interesting physical
interpretation in quaternionic quantum mechanics. Indeed, whenever H is the Hamiltonian of
some physical system, it establishes a link between the properties of H and the symmetries
of the physical system described by it. Since the time-reversal symmetry is associated
in quaternionic quantum mechanics with a linear unitary operator with the remarkable
property that it must anticommute with the Hamiltonian [8]. Hence, whenever a quaternionic
quantum system admits such a symmetry (or else, more generally, it is invariant under the
combined action of the time-reversal operator times a geometrical symmetry operator), the
anticommutant of its Hamiltonian must be non-void, then H is a pseudoanti-Hermitian operator.

6. Further properties of the pseudoanti-Hermitian operators

In this section, a useful characterization of the pseudoanti-Hermitian quaternionic operators
is obtained and some of their properties are derived.

Let us first observe that the operator
 given in equation (25) and the operator
′ = TKB,
where T is the operator defined in the proof of proposition 1 and KB is given in equation (24)
with B = {|ψn, a〉, |φn, a〉}, are diagonalizables and a biorthonormal eigenbasis associated
with them can be easily obtained.

In fact, posing

{|vm〉} =
{∣∣ψn0 , a

〉
,

1√
2
(|ψn+, a〉 + |ψn− , a〉),

1√
2
(|ψn+, a〉 − |ψn− , a〉) i

}
and

{|wm〉} =
{∣∣φn0 , a

〉
,

1√
2
(|φn+, a〉 + |φn−, a〉),

1√
2
(|φn+, a〉 − |φn−, a〉) i

}
it is easy to check that the set of vectors, T = {|vm〉, |wm〉}, is a biorthonormal basis. Moreover


 =
∑
m

|vm〉j 〈wm| (27)

and


′ =
∑
m

|vm〉k〈wm|. (28)

The next proposition provides us with the ‘imaginary’ form of the pseudoanti-Hermitian
quaternionic operators.

Proposition 8. A quaternionic diagonalizable linear operator H is pseudoanti-Hermitian if
and only if a basis exists in which it assumes the form H = iH1 where H1 is a suitable real
matrix.
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Proof. Let H be pseudoanti-Hermitian. Then two operators
 and 
′ given in equations (27)
and (28) always exist which anticommute with it. Let T = {|vm〉, |wm〉} be the biorthonormal
eigenbasis associated with 
 and 
′ (of course, the case of an orthonormal basis is obtained
by setting v = w in the following formulae), and let us consider the matrix elements of H in
such a basis:

〈wi |H |vk〉 = 〈wi |
∑
n

|ψn〉En〈φn|vk〉 = 〈wi |
H
|vk〉

= 〈wi |
∑
m

|vm〉j 〈wm|
∑
n

|ψn〉En〈φn|
∑
m′

|vm′ 〉j 〈wm′ |vk〉

=
∑
m,m′ ,n

δimj 〈wm|ψn〉En〈φn|vm′ 〉jδm′k = j 〈wi|
∑
n

|ψn〉En〈φn|vk〉j

= j 〈wi |H |vk〉j.
By the same calculations, with 
′ in place of 
, one obtains

〈wi |H |vk〉 = 〈wi |
′H
′|vk〉 = k〈wi|H |vk〉k = j 〈wi |H |vk〉j
so that necessarily 〈wi |H |vk〉 = ih1, h1 ∈ R.

In order to prove the converse implication, let H = iH1 (where H1 is a real matrix) be
given. Then the operator
 = j1 (or
′ = k1) anticommutes with it. Hence by proposition 6,
H is pseudoanti-Hermitian. �

Finally, we give the following definition in order to obtain an interesting property of the
pseudoanti-Hermitian quaternionic operators.

Definition 3. A quaternionic linear operator U is said to be ζ -pseudounitary if a Hermitian
invertible operator ζ exists such that

ζ−1U †ζ = U−1.

One easily recognizes that the operators 
 and 
′, given in equations (27) and (28), are
η-pseudounitary. Indeed, by a straightforward calculation

η−1
†η = −
 = 
−1

(
2 = −1), and the same happens for 
′. Then, also the operator

U(θ) = cos θ
 + sin θ
′ θ ∈ R (29)

is η-pseudounitary and anticommutes with H, so that we can conclude: for any pseudoanti-
Hermitian quaternionic operator, H, a one-parameter family of η-pseudounitary quaternionic
operators U(θ) exists, (with U 2(θ) = −1) which anticommutes with it.

This last statement generalizes a standard result that holds for anti-Hermitian quaternionic
operators [8] to the more general case of the pseudoanti-Hermitian ones.

7. Pseudoanti-Hermiticity and Kramers’ degeneracy

As we said at the end of section 5, when time-reversal invariant physical systems are considered
in quaternionic quantum mechanics, the Hamiltonian H must be pseudoanti-Hermitian. The
time-reversal operator, t, is unitary with the remarkable property that t2 = ±1 when fermionic
or bosonic quantum systems are respectively considered [8, 9] (note that the sign of t2 in the
fermionic and bosonic systems is opposite in quaternionic quantum mechanics with respect to
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that in complex quantum mechanics). Moreover, as we have underlined in the introduction,
Kramers’ theorem also holds when quaternionic time-reversal invariant unitary dynamics of
the fermionic systems are considered [8, 9].

In order to discuss the time-reversal invariance of the fermionic systems and the Kramers
degeneracy in the context of the non-unitary quaternionic dynamics (i.e. when non-anti-
Hermitian Hamiltonians are taken into account), we give now the following proposition that
allows one to characterize a subclass of pseudoanti-Hermitian operators which admits an
involutory linear operator which anticommutes with it.

Proposition 9. Let H be a quaternionic diagonalizable linear operator. Then the following
conditions are equivalent:

(i) a linear involutory operator,
, exists such that {H,
} = 0;
(ii) H is pseudoanti-Hermitian and the degeneracy, dn0 , of its imaginary eigenvalues is even.

Proof. Let us assume that condition (i) holds; then by proposition 6, H is pseudoanti-
Hermitian.

Let us now prove that dn0 must be even. Recall that any operator which anticommutes
with H must have the form 
 = 
h (h ∈ G) where 
 is given by equation (25). Now, 

being involutory and 
2 = −1,

h
h = −
. (30)

Furthermore, the explicit form of the commutant given in proposition 4 and equation (24)
implies the following constraints on the matrix elements of h and 
, respectively:

〈φn|h|ψn′ 〉 = 0 whenever n �= n′

and

〈φn|
|ψn′ 〉 = 0 unlessn = n′ = n0 or n = n± and n′ = n∓.

Therefore, we can study equation (30) limiting ourselves to considering the eigensubspaces
associated with each distinct imaginary eigenvalueEn0 , and the subspaces associated with the
eigenvalue pairs (En+, En−), separately.

Denoting by D the invertible complex matrix (see proposition 4) associated with h in the
eigensubspace corresponding to the imaginary eigenvalue En0 , equation (30) reads

Dj1dn0
D = −j1dn0

where 1dn0
denotes the identity matrix of dimension dn0 . Then one obtains

D∗D = −1dn0
. (31)

Hence

0 < (detD)∗ detD = det(D∗D) = (−1)dn0

which implies that dn0 must be even.
In order to prove the converse implication, let us assume that H is pseudoanti-Hermitian

with dn0 even. Then, choosing an opportune element h ∈ G given by

h =
∑
n0

dn0 /2∑
a=1

(∣∣ψn0 , a
〉〈
φn0 , a + dn0

/
2
∣∣ − ∣∣ψn0 , a + dn0

/
2
〉〈
φn0 , a

∣∣)
+

∑
n+,a

|ψn+ , a〉〈φn+ , a| −
∑
n−,a

|ψn−, a〉〈φn− , a|
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h−1 =

∑
n0

dn0 /2∑
a=1

(−∣∣ψn0 , a
〉〈
φn0 , a + dn0

/
2
∣∣ +

∣∣ψn0 , a + dn0

/
2
〉〈
φn0 , a

∣∣)

+
∑
n+,a

|ψn+, a〉〈φn+ , a| −
∑
n−,a

|ψn−, a〉〈φn− , a|



the operator


 = 
h =
∑
n0

dn0 /2∑
a=1

(∣∣ψn0 , a
〉
j
〈
φn0 , a + dn0

/
2
∣∣ − ∣∣ψn0 , a + dn0

/
2
〉
j
〈
φn0 , a

∣∣)

+
∑
n+,n−

dn+∑
a=1

(−|ψn+ , a〉j 〈φn−, a| + |ψn− , a〉j 〈φn+, a|) (32)

obviously anticommutes with H and, by a direct calculation,
2 = 1. �

As a direct consequence of the previous proposition, the following statement holds:

Proposition 10. The eigenvalues of any diagonalizable quaternionic operator with imaginary
spectrum that admits an involutory linear operator which anticommutes with it, must be at
least doubly degenerate.

Proposition 10 has an interesting physical property. In fact, if we limit ourselves
to considering the time-reversal invariant fermionic systems (t2 = 1) described by any
quaternionic (not necessarily anti-Hermitian) Hamiltonian with imaginary spectrum, then
its eigenvalues must be at least doubly degenerate and hence, for such systems, Kramers’
theorem still holds.

Conversely, if one considers a fermionic system described by a (not necessarily
anti-Hermitian) quaternionic Hamiltonian with imaginary spectrum which admits an odd
degeneracy of some eigenvalue, a time-reversal violating effect can certainly be shown (see,
for instance, [13], in which time-reversal violating effects are shown for a two-level fermionic
system described by a quaternionic anti-Hermitian Hamiltonian).
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